
Chapter 14 

Option Theory 

14.1. Introduction 

During the last 30 years, financial innovation has generalized the systematic use 
of new financial instruments called derivative instruments such as options and 
swaps, mainly used for hedging but also, sometimes, used as speculative tools. This 
matter is now essential in mathematical finance and will be fully developed here 
following the presentation of Janssen and Manca (2007). 
 

However, we will also develop some main results concerning exotic options and 
foreign currency options with the presentation of the Garman-Kohlagen formula and 
some important results on American options. 

 
The first basic derivative instruments are now called plain vanilla options: the 

two types of such options are now defined. 
 
Definition 14.1 A call option (respectively put option) is a contract giving the right 
to buy (respectively to sell) a financial asset, called an underlying asset, for a fixed 
price, called an exercise price, at the end of the contract time, called maturity time, 
also laid down in the contract. 
 

If we can exercise the option at any time before maturity, this type of option is 
said to be of an American type; if we can exercise it only at maturity, the option is 
said to be of a European type. 

 
We will use the following notation: K for the exercise price, T for the maturity 

time and S for the value of the underlying asset at maturity. 
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The “gain” of the holder of a European option at maturity time T is represented 
by the following graph. 
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Figure 14.1. Call option: holder’s gain at maturity 

For the holder of a put, this graph becomes the following. 
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Figure 14.2. Put option: holder’s gain at maturity 

Of course, to obtain the “net gain”, we must estimate the cost of the option, often 
called option premium, and furthermore transaction costs and taxes. 

 
Let us represent respectively by C and P the premiums of call and put options. 
 
So, we obtain, without taking into account transaction costs and taxes, the 

following two graphical representations. 
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Figure 14.3. Call and put options: net gains at maturity for the holder 



Option Theory     555 

We will now cover the main problem for plain vanilla options, that is, the pricing 
of such optional products. We have to give within an economic-financial theory 
framework, the values of premiums C and P as a function of the maturity T and the 
value S of the asset at time 0. 

 
More generally, as the holder of an option can sell his option on the option 

market at any time t, 0<t<T, it is also necessary to give the “fair” value of the option 
at this time t knowing that the underlying asset has, at this time, the value S = S(t), 
the fair market value represented by  

( , )C S   (14.1) 

where 

T t   (14.2) 

represents the maturity calculated at time t. 
 
Sometimes, it is also useful to represent the call value as a function of the time 

C(S, t). 
 
To discuss this pricing problem, it is absolutely necessary to give assumptions 

about the stochastic process 

.0),( TttSS   (14.3) 

Concerning the economic-financial theory framework, we adopt the assumption 
of efficient market, meaning that all the information available at time t is reflected in 
the values of the assets and so, transactions having an abnormal high profitability are 
not possible. 
 

More precisely, an efficient market satisfies the following assumptions: 

1) absence of transaction costs; 

2) possibility of short sales; 

3) availability of all information to all the economic agents;  

4) perfect divisibility of assets; 

5) continuous time financial market.  
 

Furthermore, the market is complete, meaning that there exists zero-coupon 
bonds without risk for all possible maturities. 
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A zero-coupon bond is merely an asset giving the right to receive €1 and time 
t  for the payment of the sum B at time t. 

 
Let us note that the word “information” used in point 3 can have different 

interpretations: weak, semi-strong or strong, depending on if it is based on past 
prices, on all public information or finally on all possible information that the agent 
can find. 

 
According to Fama (1965), the efficient assumption justifies the “random walk” 

model in discrete time, saying that if ( )iR s  represents the increment of an asset i 
between s and s+1, we have: 

( ) ( )i i iR s s ,  (14.4) 

i being a constant and ( ( ))i s  a sequence of uncorrelated r.v. of mean 0, 
sometimes called errors. 
 

If we add the assumptions of equality of variances and of normality of the 
sequence ( ( ))i s , we obtain a special case of the traditional random walk. 

 
Even if the efficiency assumption seems to be natural, some empirical studies 

show that this is not always the case, particularly, since some agents can have access 
to preferential information in principle forbidden by the legal authority control. 

 
Nevertheless, should such agents use the pertinent information, it will be quickly 

noticed by those markets and balance between agents will be restored. 
 
This possibility, also called the case of asymmetric information, was studied by 

Spencer, Akerlof and Stiglitz, who were awarded the Nobel Prize in Economics in 
2001. 

 
We feel that the efficiency assumption seems quite normal for the long term, i.e. 

with a large enough time unit, as it does not always seem to be true locally, i.e. with 
a short time unit. Indeed, deregulation of markets where investors want to secure 
very small benefits in a short time but in a lot of transactions plainly explains the 
intense activity of, for example, the currency markets receiving very small benefits.  

 
That is why models for asymmetric information should always be short term 

models rejecting the Absence Of Arbitrage (AOA) assumption, that is, making 
money without any investment otherwise known as a “free lunch”. 

 
To be complete, let us note that it is now possible to construct models without 

the AOA assumption but with assumptions on the time asset evolution and a 
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selection of different possible scenarios, so that the investor can predict what will 
happen if such scenarios occur (see Janssen, Manca and Di Biase (1997) and 
Jousseaume (1995)). 

 
In this chapter, we will give the two most commonly used traditional models in 

option theory: the Cox, Ross, Rubinstein model in discrete time and the Black-
Scholes model in continuous time. 

14.2. The Cox, Ross, Rubinstein (CRR) or binomial model 

The model we will present here has the advantage of being quite simple in a 
financial world not always open to the use of sophisticated mathematical tools such 
as those used by Black and Scholes in 1973 to obtain their famous formula. Thus, 
the CRR model, though coming later, was very good for the use of the Black-
Scholes formula since, in the limit, the CRR model provides this formula again. 

 
Moreover, the CRR model has still its own utility for financial institutions using 

discrete time models even with a short time period. 

14.2.1. One-period model 

To begin with, let us consider a model with only one time period, from time 0 to 
time 1; the time unit can be chosen as the user wishes: a quarter, a month, a week, a 
day, an hour, etc. 

 
The basic assumption concerning the stochastic evolution of the underlying asset 

is that, starting from value 0(0)S S  at time 0, it can only obtain two values at the 
end of the time period: 0 ( 1)uS u  if there is an up movement or 0 (0 1)dS d  in 
the case of a down movement, parameter u and d assumed to be known for the 
moment. 

 
The probability measure is thus defined by the probability q of an up movement 

and to avoid trivialities, we will assume that: 

0 1.q   (14.5) 

The next figure shows the two possible trajectories with of course  

1 .p q   (14.6) 
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Figure 14.4. One-period binomial model 

If we prefer to work with the percentages x and y respectively of gain and loss, 
we can express u and d as follows: 

1 , 1 .
100 100

x y
u d

  (14.7) 

We also suppose that there is no dividend repartition during the period. 
 

Let us now consider an investor wishing to buy a European call at time 0 with 
maturity 1 and with K as exercise price. 

 
The problem is thus to fix the premium of this call, which the investor has to pay 

at time 0 to buy this call, knowing the value S0 of the underlying asset at time 0. 

14.2.1.1. The arbitrage model 

If the investor wants to buy a call, it is clear that he anticipates an up movement 
of the call so that exercising the call at the end of the period will be advantageous 
for him, and of course for the seller of the call the reverse will happen. 

 
Nevertheless, the investor would take as little risk as possible knowing that he 

has always the possibility to invest on the non-risky market giving a fixed interest 
rate i per period. 

 
In order to build a theory taking into account the apparently contradictory points 

of view, modern financial theory is based on the AOA principle meaning that there 
is no possibility to gain money without any investment, that is, there is no possibility 
of getting a free lunch. 
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This principle implies that the parameters d, u and i of the model must satisfy the 
following inequalities: 

1d i u .  (14.8) 

Indeed, let us suppose for example that the first inequality is wrong. In this case 
the investment in the asset is always better than that on the non-risky market. If at 
time 0 we borrow the sum 0S  from the bank to by a share, at the end of the period 
obtaining the investment on assets, a free lunch of at least the amount 

0(1 )d i S  always exists. 
 
Similarly, if the right inequality is false, we can sell the asset at time 0 to get it to 

the seller at time 1 and so, the minimum value of the free lunch is, in this case, 

0(1 )i u S , so that in both cases the AOA principle is not satisfied. 
 
The seller of a call option, for example, has the obligation to sell the shares if the 

holder of the call exercises his right, he must be able to do it whatever the value of 
the considered share is; that is why we have to introduce the important concept of 
hedging. 

 
To do so, let us consider a portfolio in which at time 0 we have shares and an 

amount B of money invested at the non-risky rate i per period. 
 
B may be negative in case of a loan given by the bank. 
 
Under the AOA assumption, the investment in the call must follow the same 

random evolution as the considered portfolio so that we have the following relations 
for t = 1: 

0 0

0 0

(1) (1 ) ,

(1) (1 ) ,
u

d

C uS i B

C dS i B
  (14.9) 

where 

0

0

(1) max{0, },

(1) max{0, }.
u

d

C uS K

C dS K
  (14.10) 

System (14.9) is a linear system with two unknown values , .B  
 
The unique solution is given by: 
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0

(1) (1)
,

( )

(1) (1)
.

( )(1 )

u d

d u

C C

u d S

uC dC
B

u d i

  (14.11) 

Now, as stated above, from the AOA assumption, the value of the call at 0t , 
denoted for the moment by 0 ,0C S , is equal to the initial value of the portfolio so 
that: 

0 0 0

0 0
0

( ,1) ,

(1) (1) (1) (1)
( ,1) .

( ) ( )(1 )
u d d u

C S S B

C C uC dC
C S S

u d S u d i

 (14.12) 

We can also write this value in the following form: 

0

1
( ,0) (1) (1 ) (1) ,

1
1

.

u dC S qC q C
i

i d
q

u d

 (14.13) 

This last expression shows that the value of the call at the beginning of the 
period can be seen as the present value of the expected value of the “gain” at the 
end of the period. However, this expectation is calculated under a new probability 
measure defined by q , called risk neutral measure in opposition to the initial 
measure defined by q, and called the historical or physical measure. 

 
From assumption (14.8), this risk neutral measure is unique and moreover 

independent of q, that is, on the historical measure. 
 
This shows that whatever the investor has as anticipation about the price of the 

considered underlying asset, using this model, he will always get the same result as 
another investor. 

 
However, it must be clear that this risk neutral measure only gives an easy way 

to calculate the “fair” value of the call, but if we want to calculate probabilities of 
events, such as for example the probability of exercising the call at the end of the 
period, then it is the historical measure that must be used. 

14.2.1.2. Numerical example 

Let us consider the following data: 
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0 80, 80, 1.5, 0.5, 3%.S K u d i  (14.14) 

It follows from the model that: 

(1) max 0.80 1.5 80 40,

(1) max 0.80 0.5 80 0.

u

d

C

C  (14.15) 

The value of q is obtained, i.e.  

1.03 0.5
0.53

1.5 0.5
q   (14.16) 

and so we obtain the option value 

1
(80,0) 40 (1 ) 0 20.5825.

1.03finC q q  (14.17) 

14.2.2. Multi-period model 

14.2.2.1. Case of two periods  

The two following figures show how the model with two periods works. 
 
Here we have to evaluate not only the value of the call at the origin but also at 

the intermediary time t = 1. 

0 1 2

S

uS

uuS

dS

udS

ddS

 

Figure 14.5. Two-period model: scenarios for the underlying asset 

Using the notation ( , ), 0,1,2C S t t  in which the second variable represents 
the time, here 0, 1 or 2, the first variable is the value of the underlying asset at this 
considered time. 
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Here too, as in the case of only one period, the call values will be assessed with 
the risk neutral measure as the present values at time t of the “gains” at maturity  
t = 2, i.e.: 

( ,2) .qE C S   (14.18) 

0 1 2

C

Cu

Cuu

Cd

Cud

Cdd

 

Figure.14.6. Two-period model: values of the call 

For example, we obtain for t = 0: 

2 2
0

0 2 2 2
0 0

max 0, 2 (1 )1
( ,0) .

(1 ) max 0, (1- ) max 0,

q u S K q q
C S

i udS K q d S K
 (14.19) 

Remark 14.1 Using a backward reasoning from t = 2 to t = 1 and from t = 1 to t = 
0, it is also possible to obtain this last result: 

2
0 0 0

2
0 0 0

0 0 0

1
( ,1) ( ,2) (1 ) ( ,2) ,

1
1

( ,1) ( ,2) (1 ) ( ,2) ,
1
1

( ,0) ( ,1) (1 ) ( ,1) .
1

C uS qC u S q C udS
i

C dS qC udS q C d S
i

C S qC uS q C dS
i

 (14.20) 

Substituting the first two values in the last equality given above, we rediscover 
relation (14.19). 

14.2.2.2. Case of n periods 

0( , )j n ju d
C S n  represents the call value at t = n if the underlying asset has had j 

up movements and n-j down movements and with an initial value of the underlying 
asset of (0)S , that is: 
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0 0( , ) max 0, , 0,1,..., .j n j

j n j

u d
C S n u d S K j n  (14.21) 

A straightforward extension of the case of two periods gives the following result: 

0
0

1
( ,0) (1 ) ( )

(1 )
j n j

n
j n j

n u d
j

n
C S q q C n

ji
 (14.22) 

and similar results for intermediary time values. 
 
From the calculational point of view, Cox and Rubinstein introduce the 

minimum number of up movements a so that the call will be “in the money”, which 
will mean that the holder has the advantage to exercise his option; clearly, this 
integer is given by: 

0min : .j n ja j N u d S K   (14.23) 

Of course, if a is strictly larger than n, the call will always finish “out of the 
money” so that the call value at t = n is zero. 

 
From relation (14.23), we obtain: 

1
0

0 1

log
1,

log

n
j n j KS d

u d S K a
ud

 (14.24) 

x  representing the larger integer smaller than or equal to the real x. 
 
From section 10.1, we know that if X is an r.v. having a binomial distribution 

with parameters (n, q), we have: 

1 (1 ) ( ( , ; )).
n

j n j

j a

n
P X a q q B n q a

j
 (14.25) 

As we have (see Cox, Rubinstein (1985)): 

1
1,

i
q

u
  (14.26) 

it follows that the quantity 'q  defined here below is such that 0 ' 1q  and so the 
call value can be written in the form: 
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0 0( ,0) ( , '; ) ( , ; ),
(1 )

1
, ' .

1

fin n

K
C S S B n q a B n q a

i

i d u
q q q

u d i

 (14.27) 

In conclusion, the binomial distribution is sufficient to calculate the call values. 

14.2.2.3. Numerical example 

Coming back to the preceding example for which 

0 80, 80, 1.5, 0.5, 3%,S K u d i  (14.28) 

and 0.53q  but now for n=2, we obtain: 

1.5
' 0.6 0.7718

1.03
q   (14.29) 

and consequently  

(80,0) 26.4775.C   (14.30) 

14.3. The Black-Scholes formula as the limit of the binomial model  

14.3.1. The log-normality of the underlying asset 

Since nowadays financial markets operate in continuous time, we will study the 
asymptotical behavior of CRR formula (14.27) to obtain the value of a call at time 0 
and of maturity T. 

 
To begin with, we will work with a discrete time scale on [0,T] with a unit time 

period h defined by n = T/h or more precisely /n T h . 
 
Moreover, if i represents the annual interest rate, the rate for a period of length h 

called î is defined by the relation: 

(1 ) (1 )n Tî i ,  (14.31) 

so that 

(1 ) 1.
T

nî i   (14.32) 
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If nJ  represents the r.v. giving the number of ascending movements of the 
underlying asset, we know that: 

( , )nJ B n q   (14.33) 

and so, starting from 0 ,S the value of the underlying asset at the end of period n is 
given by 

, ,

0( ) .n nJ n JS n u d S   (14.34) 

It follows that  

0

( )
log log log .n

S n u
J n d

S d  
 (14.35) 

The results of the binomial distribution (see section 10.5.1) imply that 

0

2

0

2

2
2

( )
ˆlog ,

( )
ˆvar log ,

ˆ ˆ log ,

ˆ (1 ) log .

S n
E n

S

S n
n

S

q d

u
q q

d

  (14.36) 

To obtain a limit behavior, for every fixed n, we must introduce a dependence of 

u, d and q with respect to /n T h  so that  

2 2

ˆlim ( ) ,

ˆlim ( ) ,

n

n

n n T

n n T
 

 (14.37) 

,   being constant values as parameters of the limit model. As an example, Cox 
and Rubinstein (1985) select the values  
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/ /1
, ( ),

1 1
/ .

2 2

T n T nu e d e
u

q T n
 

 (14.38) 

This choice leads to the values: 

2 2 2

ˆ ( ) ,

ˆ ( ) .

n n T

T
n n T

n  

 (14.39) 

Using a version of the central limit theorem for independent but non-identically 
distributed r.vs., the authors show that 0( ) /S n S  converges in law to a lognormal 
distribution for n . More precisely, we have: 

0

( ) ˆlog ( )

( ),
ˆ

S n
n n

S
P x x

n
 (14.40) 

, being as defined in section 10.3, is the distribution function of the reduced 
normal distribution provided that the following condition is satisfied: 

3 3

3

ˆ ˆlog (1 ) log
0.

ˆ n

q u q u

n
 (14.41) 

This condition is equivalent to 

2 2(1 )
0

(1 )

q q

nq q
  (14.42) 

which is true from assumption (14.38). 
 
This result and the definition given in section 10.4, gives the next proposition. 
 

Proposition 14.1 (Cox and Rubinstein (1985)) Under assumption (14.38), the limit 
law of the underlying asset is a lognormal law with parameters 2( , )T T  or 
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0

( )
log

( ).

S T
T

S
P x x

T
  (14.43) 

In particular, it follows that: 

2

2 2

2

0

2

0

( )
,

( )
var ( 1).

T T

T T T

S T
E e

S

S T
e e

S

  (14.44) 

14.3.2. The Black-Scholes formula 

Starting from result (14.25) and using Proposition 14.1 under the risk neutral 
measure, Cox and Rubinstein (1985) proved that the asymptotical value of the call is 
given by the famous Black and Scholes (1973) formula: 

( , ) ( ) (1 ) ( ),

ln / (1 ) 1
.

2

T

T

C S T S x K i x T

S K i
x T

T

 (14.45) 

Here, we note the call using the maturity as a second variable and S representing 
the value of the underlying asset at time 0. 

 
The interpretation of the Black and Scholes formula can be given in the concept 

of a hedging portfolio. 
 
Indeed, we already know that in the CRR model, the value of the call takes the 

form: 

C S B ,  (14.46) 

 representing the proportion of assets in the portfolio and B the quantity invested 
on the non-risky rate at t = 0. 
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From result (14.46), at the limit, we obtain: 

( ),

(1 ) ( ).T

x

B K i x T  

  (14.47) 

So, under the assumption of an efficient market, the hedging portfolio is also 
known in continuous time. 
 
Remark 14.2 This hedging portfolio must of course, at least theoretically, be 
rebalanced at every time s on [0, T]. Rewriting the Black and Scholes formula in 
order to calculate the call at time s, the underlying asset having the value S, we 
obtain: 

( )

( )

( ), (1 ) ,

ln / (1 ) 1
.

2

T s

T s

x B K i x T s

S K i
x T s

T s

 (14.48) 

Of course, a continuous rebalancing and even a portfolio with frequent time 
changes are not possible due to the costs of transaction. 

14.4. The Black-Scholes continuous time model 

14.4.1. The model 

In fact, Black and Scholes used a continuous time model for the underlying asset 
introduced by Samuelson (1965). 

 
On a complete filtered probability space Ptt ,0,,,  (see Definition 

10.13) the stochastic process  

( ), 0S S t t   (14.49) 

will now represent the time evolution of the underlying asset. 
 
The basic assumption is that the stochastic dynamic of the S-process is given by 

0

( ) ( ) ( ) ( ),

(0) ,

dS t S t dt S t dB t

S S  
  (14.50) 



Option Theory     569 

where the process ( ( ), 0, )B B t t T  is a standard Brownian process (see  
section 10.9 which is adapted to the considered filtration). 

14.4.2. The solution of the Black-Scholes-Samuelson model 

Let us go back to model (14.50). Using the Itô formula of Chapter 13 for lnS(t), 
we obtain: 

2

ln ( ) ( )
2

d S t dt dB t   (14.51) 

and so by integration: 

2

0ln ( ) ln ( ).
2

S t S t B t  (14.52) 

As, for every fixed t, B(t) has a normal distribution with parameters (0, t) – t for 
the variance – (see Chapter 13), this last result shows that the r.v. S(t)/S0 has a 

lognormal distribution with parameters 
2

2,
2

t t  and so: 

2

0

2

0

( )
log ,

2

( )
var log .

S t
E t

S

S t
t

S

  (14.53) 

Of course, from result (14.52), we obtain the explicit form of the trajectories of 
the S-process: 

2

2 ( )
0( ) .

t
B tS t S e e   (14.54) 

This process is called a geometric Brownian motion. 
 
The fact of having the lognormality confirms the CRR process at the limit as, 

indeed, a lot of empirical studies show that, for an efficient market, stock prices are 
well adjusted with such a distribution. 
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From properties of the lognormal distribution, we obtain: 

2

0

2

0

( )
,

( )
var ( 1).

t

t t

S t
E e

S

S t
e e

S

  (14.55) 

So, we see that the mean value of the asset at time t is given as if the initial 
amount S0 was invested at the non-risky instantaneous interest rate  and that its 
value is above or below S0 following the “hazard” variations modeled with the 
Brownian motion. 

 
From the second result of (14.55), it is also clear that the expectations of large 

gains – and losses! – are better for large values of ; that is why  is called the 
volatility of the considered asset. 

 
It follows that a market with high volatility will attract risk lover investors and 

not risk adverse investors. 
 
From the explicit form, it is not difficult to simulate trajectories of the S-process. 

The next figure shows a typical form. 
 

 

Figure 14.7. A typical trajectory 

14.4.3. Pricing the call with the Black-Scholes-Samuelson model 

14.4.3.1. The hedging portfolio 

The problem consists of pricing the value of a European call of maturity T and 
exercise price K at every time t belonging to [0, T] as a function of t or the maturity 
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at time t, T t , and of the value of the asset at time t, S = S(t), knowing that the 
non-risky instantaneous interest rate is r, so that if i is the non-risky annual rate, we 
have: 

1re i .  (14.56) 

We will use the notations C(S, t) or, more frequently, ( , )C S . 
 
As in the CRR model, we introduce a portfolio P containing, at every time t of a 

call and a proportion , which may be negative, of shares of the underlying asset. 
 
The stochastic differential of P(t) is given by: 

( ) ( , ) ( )dP t dC S t dS t   (14.57) 

or, from relation (14.50): 

( ) ( , ) ( ) ( ) ( ).dP t dC S t S t dt S t dB t  (14.58) 

Using Itô’s formula, in a correct form as proved by Bartels (1995) of the first 
initial form given by Black and Scholes (1973), we obtain: 

2
2 2

2 2

1
) ( , ) ( , ) ( , ) ( )

2

( ) ( , ) ( ).

C C C
dP t S t S S t S t S S t dt

S t S

C
S t S t S dB t

S

 (14.59) 

Now, using the principle of AOA, this variation must be identical to that of the 
same amount invested at the non-risky interest, that is: 

.),()( dtStSCrdttrP   (14.60) 

So, we obtain the following relation: 

( ) ( ),rP t dt dP t   (14.61) 

2
2 2

2 2

( , )

1
( , ) ( , ) ( , ) ( )

2

( ) ( , ) ( ).

r C S t S dt

C C C
S t S S t S t S S t dt

S t S

C
S t S t S dB t

S

 (14.62) 
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By identification, we obtain: 

2
2 2

2 2

( , )

1
( , ) ( , ) ( , ) ( ) 0,

2

( ) ( , ) 0.

r C S t S dt

C C C
S t S S t S t S S t dt

S t S

C
S t S t S

S

 (14.63) 

From the last equality, we obtain: 

( , ).
C

S t
S

  (14.64) 

Substituting this value in the first equality of (14.63), we obtain after 
simplification: 

2
2 2

2 2

1
( , ) ( , ) ( , ) ( , ) 0,

2

C C C
r C S t S t S S t S t S

S t S
 (14.65) 

or finally 

2
2 2

2 2

1
( , ) ( , ) ( , ) ( , ) 0,

2

C C C
rC S t r S t S S t S t S

S t S
 (14.66) 

a linear partial differential equation of order 2 for the unknown function C(S, t) 
with as initial condition  

0, 0, ,
( , )

max 0, ,

t T
C S t

S K t T . (14.67) 

Using results from the heat equation in physics, for which an explicit solution is 
given in terms of a Green function, Black and Scholes (1973) obtained the following 
explicit form for the call value: 
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( )
1 2

2

1

2 1

( , ) ( ) ( ),

1
log ( )( ) ,

2

,

( ).

r T tC S t S d Ke d

S
d r T t

KT t

d d T t

S S t

 (14.68) 

Remark 14.3 

(i) Using relation (14.61), we obtain relation (14.45) for t = 0 or T . The 
interpretation is, of course, already given in section 14.3.2. 

(ii) The differentiation in relation (14.57) is correct only if we assume that the 
supplementary terms produced by Itô’s calculus (see relation (13.108)) are zero. In 
fact, this assumption is equivalent to assuming that the used portfolio strategy is self 
financing; this means that each rebalancing of the portfolio has no cost. 

14.4.3.2. The risk neutral measure and the martingale property 

As for the CRR model, it is possible to construct another probability measure Q 
on , ,( )t , called the risk neutral measure, such that the value of the call given 
by formula (14.68) is simply the expectation value of the present value of the “gain” 
at maturity time T. 

 
Using a change of probability measure for going from P to Q, with the famous 

Girsanov theorem (see for example Gihman and Skorohod (1975) and Chapter 15) it 
can be shown that the new measure Q, which moreover is unique, can be defined by 
replacing in the stochastic differential equation (14.50) the trend  by r. 

 
Doing so, the explicit form of S(t) given by relation (14.54) becomes: 

2

2 '( )
0( )

r t
B tS t S e e   (14.69) 

where process 'B  is an adapted standard Brownian motion and the value of C can 
be calculated as the present value of the expectation of the final “gain” of the call at 
time T: 

( )( , ) sup ( ) ,0 .r T t
QC S t e E S T K  (14.70) 

The risk neutral measure gives another important property for the process of 
present values of the asset values on [0, T]: 
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( ), 0,rte S t t T    (14.71) 

Indeed, under Q, this process is a martingale, so that (see section 10.8) for all s 
and t such that :s t  

( )  ( ) ( ).rt
sE e S t s t S s   (14.72) 

This means that at every time s, the best statistical estimation of S(t) is given by the 
observed value at time s, a result consistent with the assumption of an efficient market. 

 
From relation (14.72), we obtain in particular: 

0( ) .rtE e S t S   (14.73) 

So, on average, the present value of the asset at any time t equals its value at time 0. 
 
To conclude, we see that the knowledge of the risk neutral measure avoids the 

resolution of the partial differential equation and replaces it by the calculation of an 
expectation, which is in general easier, as it only uses the marginal distribution of S(T). 

 
However, we must add that, for more complicated derivative products, it may be 

more interesting, from the numerical point of view, to solve this partial differential 
equation with the finite difference method, and particularly in the case of American 
options.  

14.4.3.3. The call put parity relation  

From section 14.1, we know that the value of a put at maturity time T and 
exercise price K is given by: 

( ), max 0, ( ) .P S T K K S T  (14.74) 

As for the call, we have: 

( ), max 0, ( ) ,C S T K S T K  (14.75) 

and so, we obtain: 

( ), ( ), ( ) .C S T K P S T K S T K  (14.76) 

And so, for the expectations: 
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( ), ( ), ( ) .E C S T K E P S T K E S T K  (14.77) 

Using the principle of mathematical expectation for pricing the call and put, we obtain: 

0 0( ,0) ( ,0) ( ) .rT rTe C S e P S E S T K  (14.78) 

We call this relation the general call put parity relation as it gives the value of 
the put knowing the value of the call and vice versa. 

Now, under the assumption of an efficient market, we can use property (14.73) 
to get  

KeSSPeSCe rTrTrT
000 )0,()0,(  (14.79) 

and so the put value is given by: 

0 0 0( ,0) ( ,0) .rTP S C S S e K  (14.80) 

Remark 14.4 We can interpret this relation as follows: assume a portfolio having at 
time 0 a share of value S0, a put on the same asset with maturity T and an exercise 
price K, and a sold call with the same maturity and exercise price; the value of the 
portfolio at time T is always K, whatever the value of S(T) is. 
 

From the call put parity relation, we easily obtain the value of a put having the 
same maturity time T and exercise price K as for the call: 

( )( , ) ( , ) ,r T tP S t C S t S e K   (14.81) 

and using the Black and Scholes result, we obtain: 

( )
2 1

2

1

2 1

( , ) ( ) ( ),

1
log ( ) ,

2

,

( ).

r T tP S t Ke d S d

S
d r T t

KT t

d d T t

S S t

 (14.82) 
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14.5. Exercises on option pricing 

Exercise 14.1 Let us consider a portfolio with  shares of unit price €1,000 and an 
amount b invested at the non-risky interest rate of 4% per period. 

1) What is the price C of a European call having €1,050 as the exercise price, of 
maturity two periods if, per period, the share increases by a quarter of its value with 
probability 0.75 and decreases by a third of its value with probability 0.25? What are 
the intermediate values of the call? 

2) What is the composition of the hedging portfolio at time 0?  

3) If the maturity has a value of 2 weeks and the period is the day, give an 
estimation of the volatility and the trend of the considered asset. 

Solution: 

1) 
512.5, 0,

315.38, 0,

194.08.

uu ud dd

u d

C C C

C C

C  

2)  

u

d

 where:

C
= 54.07% (part of the asset),

( )

uC
346.57  (loan at the non-risky rate from the bank).

( )

d

u

C S B

C

S u d

dC
B F

u d

 

3) We know that: 
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14 14

14 14

5
1,000 1,000 ,

4

2
1,000 1,000 ,

3
or:

14 ,

1 ,

so:

5 5
14 14 ln ,

4 4
2 5

14 14 ln .
3 4
Finally,we obtain:

1
0.2231436 0.0079694,

28
360 0.0079694 2.868994,

1

2 14

t t

n n

t t

n n

year

e

e

t days

n day

e

e

0.2231436 0.0298188,

360 0.0298188 0.565772.year  

14.6. The Greek parameters 

14.6.1. Introduction 

The technical management of the trader of options, particularly by the brokers, 
uses the Greek parameters to measure the impacts of small variations of parameters 
involved in formulas (4.20) and (4.34) for the pricing of options:  

, , , ,S r K . 

The delta coefficient 

This is an indicator concerning the influence of small variations S of the asset 
price defined as follows: 
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( , ) ( , ) ( ),

( , ).

C S S t C S t S

C
S t

S

  (14.83) 

This parameter is often used to cancel the variations of the asset value in the 
hedging portfolio. 

The gamma coefficient 

This is defined as:  

2

2
( , )

C
S t

S
  (14.84) 

and so it may be seen as the delta of the delta. 
 
It gives a measure of the acceleration of the variation of the call and a refinement 

of the measure of the variation of the call using the Taylor formula of order 2: 

21
( , ) ( , ) .

2
C S S t C S t t t  (14.85) 

The theta coefficient 

It gives the dependence of C with respect to the maturity ( )T t , and so also 
from time t: 

.
C C

t
  (14.86)

 

It follows the first order approximation: 

( , ) ( , ) .C S t t C S t t    (14.87) 

For the maturity variations T t , we obtain: 

( , ) ( , ) .C S C S   (14.88) 

The elasticity coefficient 

Recall the economic definition of this coefficient which gives: 
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( , ) ( , )
( , )

C S
e S t S t

S C S t
  (14.89) 

and so: 

( , ) ( , )
( , ) .

( , )

C C S S t C S t S
e S t

C C S t S
 (14.90) 

The vega coefficient 

This is the indicator concerning the measure of small variations of the volatility 
 and so: 

( , )
C

S t .  (14.91) 

Thus, we have approximately for small variations ,  

( , ) ( , ) .C S S t C S t   (14.92) 

The rho coefficient 

This concerns the non-risky instantaneous rate r and so: 

( , ).
C

S t
r    (14.93) 

14.6.2. Values of the Greek parameters 

The following table gives the values of the Greek parameters first for the call and 
then for the put. 
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1

1

1

-r
2

-r
2 1

2

I. For the calls:

C
1) delta = = ( ) 0

S

'( )
2) gamma = 0

S

C
3) vega = = '( ) 0

C
4) rho = = e ( ) 0

r

C S
5) theta(= )=rKe ( )+ '( ) 0

2

6) ( ) 0

II. F

r

d

d

S

S d

K d

d d

C
e d

K

1 1

1

1

2 2

or the puts:

P
1) delta = =( ( ) 1) ( )( 1) 0

S

'( )
2) gamma = ( ) 0

S

P
3) vega = = '( )( ) 0

P
4) rho = =- K ( ) K ( ) 1 ( K ) 0

r

5) t

C

C

C

r r r
C

d d

d
gamma

S

S d véga

e d e d rhô e

-r
1 2

2 2

P
heta = = '( ) Ke 1 ( ) ( )

2

6) ( ( ) 1) ( ) 0

r
C

r r r

C

S
d r d rKe

P P
e d e d e

K K

 

These values give interesting results concerning the influence of the considered 
parameters of the call and put values. 

 
For example, we deduce that the call and put values are increasing functions of the 

volatility, and the call increases as S increases but the put decreases as S increases. 
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14.6.3. Exercises 

Exercise 14.2 Let us consider an asset of value €1,700 and having a weekly variance 
of 0.000433. 

(i) What is the value of a call of exercise price €1,750 with maturity 30 weeks 
under a non-risky rate of 6%? 

(ii) Under the anticipation of a rise of €100 of the underlying asset and of a rise 
of 0.000018 of the weekly variance, what will be the consequences of the call and 
put values? 
 
Solutions 

(i) The values of the parameters necessary to calculate the call value using the 
Black and Scholes formula are: 

2 20.00043 52 0.00043 0.2236,  0.47286,

30 0.576923 ,  1750, 1700,

6% ln(1 ) 0.05827.

week year year

weeks year K S

i r i

 

It follows that: 

2

1 1

1

2 1 2

1

1
ln 0.09760272,

2

( ) 0.5388762,

0.01637096, ( ) 0.4934692,

( , ) ( ) 81.07 .r

S
d r d

K

d

d d d

C S S d Ke Euro

 

Using call put parity relation; we obtain for the put value  

73.07 .rP Ke C S P Euro  

(ii) Rise of the underlying asset. We know that: 

1

( , ) ( , ) ( , ) ,  

 ( , ) ( ),

so :

(1700 100, ) 81.07 100 0.5388762 135.95 .

C
C S S C S S S

S
C

S d
S

C Euro
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For the put, we obtain: 

( , ) ( ) ( ) 27.1 .rP S S Ke C S S S S Euro  

(iii) Rise of the volatility. The value of the new weekly variance is now given by: 

0.000433 0.00018 0.000613  

and, so the new yearly variance and volatility are given by 

,1785385.0031876.0  

and consequently, the variation of the yearly volatility is given by: 

0.1785385 0.1500533 0.284852.  

As the increase in volatility comes after that of the asset value, we have  

1

( , , ) ( , , ) ,

with:

( ).

C
C S S C S S

C
d

 

However: 

,39704658.0
2

1
)( 2

1

2
1d

ed  

and so: 

542.84.
C

 

Finally, we obtain: 

.41.150),,(),,( F
C

SSCSSC  
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For the variation for the put, we use the call put parity relation and so: 

( , , ) ( , , ) ( ) 42.56 .rP S S C S S Ke S S F  

Exercise 14.3 For the following data, calculate the values of the call, the put and the 
Greek parameters 

100, 98, 30 days, 0,01664, 8%.weekS K i  

Solution 

Yearly vol. 0.12  

Maturity 0.08219  

R=ln(1+i) 0.076962  

   

Results Call Put 

   

Price 3.04721 0.42926 

Delta 0.7847 –0.2153 

Vega 8.3826 8.3826 

Theta 11.924 4.334 

Gamma 0.08499 0.08499 

Rho 6.199 –1.805 

Table 14.1. Example option calculation 

14.7. The impact of dividend repartition  

If, between t and T, the asset distributes N dividends of amounts 1,..., ND D  at times: 

1 2(0 ) ( )Nt t t t T ,  (14.94) 

the impact of the value of a European call is the following: as the buyer of the call 
cannot receive these dividends, it suffices to calculate the present value at time t of 
these dividends and to subtract the sum from the asset value at time t so that the call 
value is now: 

1
1

( , ; ,..., ) , ,

, 1,..., .

r j
N

N j
j

j j

C S D D C S D e

t t j N

 (14.95) 
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Of course, the most usual case is N=1. 
 
If we assume that the distribution of dividends is given with a continuous payout 

at rate D per unit of time, 

0 t Tt' t'+dt'

Ddt'

 

Figure 14.8. Continuous “payout” 

the capitalized value is De  and so the value of the call is given by: 

( , ; ) ( , ).DtC S D C Se   (14.96) 

14.8. Estimation of the volatility 

14.8.1 Historic method 

This method is based on the data of the underlying asset evolution in the past, for 
example the n daily values 

0 1 nS ,S ,...,S .  (14.97) 

Let us consider the following sample of the consecutive ratios: 

1
1

0 1

,..., ,..., .n
n

n

SS
R R

S S
  (14.98) 

From the lognormal distribution property, we have: 

2

1

ln
2

(0,1),

with , 1,..., .

t

t
t

t

R

N

S
R t n

S

  (14.99) 
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It follows that the random sample nRR ln,...,ln 1  can be seen as extracted 
from a normal population 2',  with: 

2

' .
2

  (14.100) 

The traditional results of mathematical statistics give as best estimators: 

1 1

2

2

1 1

1
ˆ ' ln ,

1
ˆ ˆln ' .

n
k

k k

n
k

k k

R

n R

R

n R

  (14.101) 

To obtain an unbiased estimator of the variance, we have to use: 

2 2ˆ̂ ˆ
1

n

n
  (14.102) 

or: 

.)'ˆ(
1

ln
1

1
ˆ 2

2

1 1

2

n

n

R

R

n

n

k k

k  (14.103) 

Example 14.1 On the basis of a sample of 27 weekly values of an asset starting 
from the initial value of €26.375, the following weekly estimations are found: 

2

ˆ 0.016732

ˆ 0.005216.
 

Consequently, as the parameters of the Black and Scholes model must be 
evaluated on a yearly basis, we obtain  

2

ˆ 52 0.016732 0.870064 0.87,

ˆ 52 0.005216 0.271232,

ˆ 0.271232 0.520799 0.52.

year

year

year
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14.8.2. Implicit volatility method 

This method assumes that the Black and Scholes calibrates the market values of 
the observed calls well. 

 
Theoretically, an inversion of the Black and Scholes formula gives the value of 

the volatility . 
 
On the basis of several observations of the calls for the same underlying asset, 

we can use the least square statistical method to refine the estimation. 
 
Example 14.2 Using the data of Exercise 14.3, we assume that we have an observed 
value of the call 3.04715, but without knowing the volatility. 
 

The next table gives the results using a step by step approximation method. 
 

Weekly vol. Annual vol. Call value 

0.02 0.144 3.26 

0.015 0.1081 2.95 

0.017 0.1225 3.069 

0.016 0.1153 3.008 

0.0165 0.1189 3.038 

0.01664 0.1199 3.04713 

Table 14.2. Volatility calculation 

So, we find the correct volatility value to be 0.12. 
 
Remark 14.5 The main difficulty is to select the historical data. 
 

The set must not be too long or too short in order to avoid disrupted periods 
introducing strong biases in the results. 
 

Moreover, we always work with the assumption of a constant volatility that we 
will overtake in section 14.10. 
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14.9. Black-Scholes on the market 

14.9.1. Empirical studies 

Since the opening of the CBOT in Chicago in 1972, numerous studies have been 
carried out for testing the results of the Black and Scholes formula. 

 
In the case of efficient markets, the conclusions are as follows: 

(i) the non-risky interest rate has little influence on the option values; 

(ii) the Black and Scholes formula underestimates the market values for calls 
with short maturity times, for calls “deep out of the money” (S/K<0.75) and for calls 
with weak volatility; 

(iii) the Black and Scholes formula overestimates the market values for calls 
“deep in the money” (S/K<1.25) and for calls with high volatility. The put values are 
often underestimated particularly in the out of the money (S>>K) case; 

(iv) the puts are often underestimated particularly when they are out of money 
(S<<K). 

14.9.2. Smile effect 

If we calculate the volatility values with the implicit method in different times, in 
general, the results show that the volatility is not constant, thus invalidating one of 
the basic assumptions of the considered Black and Scholes model. 

 
The graph of the volatility as a function of the exercise price often gives a graph 

with a convex curve, a result commonly called the “smile effect”. 
 
However, sometimes, concave functions are also observed. 
 
Although, theoretically, volatilities for the pricing of calls and puts are identical, 

in practice, some differences are observed; they are assigned to differences of “bid-
offer spread” and to the methodology of the implicit method used at different times. 

 
The fact that it is important to consider option pricing models with non-constant 

volatility is one of the approaches of the next model.  
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14.10. Exotic options 

14.10.1. Introduction 

The derivative products of first generation concern the traditional calls and puts 
also called plain vanilla options and furthermore the anticipation of the investor 
leads to the construction of strategies for hedging or eventually for speculation.  

 
However, these traditional options and the derived strategies generally have high 

costs and their exercise prices only depend of the value of the underlying assets at 
maturity. In particular, they do not work for some markets such as foreign currency 
and commodities markets. 

 
That is why the market of derivative products has been enlarged with the second 

generation options or exotic options. 
 
Their main characteristics are as follows: 

a) a prime reduction, essentially for barrier, binary mean and compound options 
defined after; 

b) introduction of a diversification with the use of options of the types out 
performance, best of, worst of; 

c) use of options of the types lookback, option on the mean, etc.; 

d) use of options linked to the exchange market like a quanto option. 
 

All these options are in fact two types following the way on which the exercise 
price is defined: 

(i) “non-path dependent” options: the exercise price is defined at the time of the 
conclusion of the option contract; 

(ii) “path dependent” options: the exercise price is not known at the time of the 
conclusion of the option contract but the way to calculate it at the maturity time is 
given in the contract. 
 

In practice, the market of such options is less liquid than the traditional market 
and also has a lack of organization due to the lack of standardized contracts. 

 
However, the foreign currency options are available on organized markets as the 

PHLX (Philadelphia Options Exchange) created in 1983 with a clearing room, yet 
approximately 80% of the transactions are over the counter and in this last case, 
intermediaries are big banks supporting the counterpart for bid and ask for their 
customers. 
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14.10.2. Garman-Kohlhagen formula 

For foreign currency options, we use the Black and Scholes model: 

0

( ) ( ) ( ) ( ),

(0) .

dS t S t dt S t dB t

S S
  (14.104) 

with the usual assumptions, but here S(t) is the value of the spot exchange rate at 
time t. The domestic and foreign instantaneous interest rates, respectively noted 
rd ,rf , are constant over the life of the considered option. 
 

Under these assumptions, it is possible to calculate the value of a call with the 
following formula: 

( ) ( )
1 2

2

1

2 1

( , ) ( ) ( ),

1
log ( ) ,

2

,

( ).

f d
r T t r T t

d f

C S t Se d Ke d

S
d r r T t

KT t

d d T t

S S t

 (14.105) 

The calculation of the put value is done with the following call put parity 
relation: 

0 0 0

( ) ( )

( ,0) ( ,0)

or

( , ) ( , ) ,

f d

f d

r T r T
fin fin

r T t r T t
fin fin

P S C S e S e K

P S t C S t e S e K

 (14.106) 

so that: 

( )( )
2 1

2

1

2 1

( , ) ( ) ( ),

1
log ( )( ) ,

2

,

( ).

fd r T tr T t

d f

P S t Ke d Se d

S
d r r T t

KT t

d d T t

S S t

 (14.107) 

Remark 14.6 Some empirical studies show that the G-K formula overestimates the 
observed market values.  
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14.10.3. Greek parameters 

The values of the Greek parameters for calls and puts obtained by calculation as 
for the traditional Black and Scholes model are given below. 

I. For the call:

C -r*1) delta = =e ( ) 01S

'( )-r* 12) gamma = e 0
S

C -r3) vega = =e '( ) 01

C -r4) rho = = e ( ) 02r

C -r¨*4 ') rho' = =- e ( ) 01r*

C
5) theta =

d

d

S

K d

K d

K d

-r* -r=-r*e S (d )+rKe ( )+ '( ) 01 2 22

6) ( ) 02

II. For the put:

P -r* -r*1) delta = =e ( ( ) 1) e ( ) 01 1S

'( )-r* 12) gamma = e ( ) 0
S

P *3) vega = =

K
d d

C re d
K

d d

d
gammaP

S

rKe '( )( ) 01

P
4) rho(= )= K ( ) K 1 ( ) 02 2r

P -r* -r5) theta = =-r*Se ( ) '( ) Ke ( )1 2 2

d vegaC

r re d e d

rKe
d d r d

 

14.10.4. Theoretical models  

We know that there exist two ways for pricing derivative products:  

(i) the resolution of a partial differential equation (PDE) with eventually a 
numerical solution of the risk neutral measure method; 

(ii) the calculation of the present value of gain at maturity under the risk neutral 
measure. 

 
Let us recall that the first gives a PDE for the call value using Itô’s calculus and 

the assumption of absence of opportunity arbitrage (AOA). For non-plain vanilla 
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options, the only way to work is to use numerical methods to obtain an approximate 
solution with, for example, the finite differences method. 

It is also possible to use a discrete time model as the Cox-Rubinstein method, 
particularly useful for the American type. 

 
The risk neutral measure method uses the Girsanov theorem to obtain a new 

probability measure Q instead of the historical probability measure P so that the call 
value is given with the present value of the “gain” at maturity. 

 
Here, the new measure Q is obtained with a new trend in the SDE (14.104) given 

by d fr r . 

In this case, on [0, T], we obtain: 

2

( ) ( ) ( ( ) ( ))
2( ) ( ) ,

d fr r T t B T B t

S T S t e  (14.108) 

( ( ),0 )B B s s T  being a new standard  Brownian motion standard on the 
filtered probability space ( , ,( ), )t Q . 
 

If h represents the “gain” at maturity for the considered derivative product, the 
value V(t) of this product at time t is given by: 

( )( ) .dr T t
Q tV t E e h   (14.109) 

For example, for a plain vanilla call of exercise price K, we obtain 

( ( ) ) ,h S T K   (14.110) 

and so: 

2

( ) ( ) ( ( ) ( ))
2( )( ) ( ( ) ) .

d f
d

r r T t B T B t
r T t

tV t E e S t e K  (14.111) 

The process S being adapted to the basic filtration, we finally obtain:  

2
2

( ) ( ) )
2( ) 2

( ) ( ( ), )

1
( ( ) ) )

2

d f
d

zr r T t z T t
r T t

R

V t C S t t

e S t e K e dz
, (14.112) 
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An expression resulting in, after the change of variable ,
y

x
T t

 the Garman-

Kohlhagen formula. 

Similarly, for the put, we obtain: 

2

( ) ( ) ( ) ( )
2( )( ) ( ) .

d f
d

r r T t B T B t
r T t

tV t E e K S t e  (14.113) 

Remark 14.7 (options on shares and options on foreign currency options) 
Formally, the Garman-Kohlhagen formula is an simple extension of the Black and 
Scholes formula; indeed, setting 0fr  in the first formula, we obtain the second. 
 

In particular, this means that all the results on exotic foreign currency options 
contain similar results for share options. 

14.10.5. Binary or digital options 

14.10.5.1. Definition 

We will present the “cash or nothing” and “asset or nothing” options. In this 
case, the gain at maturity depends on the fact that, at maturity time, the underlying 
asset goes beyond a barrier called the exercise price and if so, the exercise of the 
option gives as gain a fixed amount mentioned in the contract signed at time of 
purchase of the considered option and independent of S(T). 
 

In other words, the purchaser of the option receives a coupon if the underlying 
asset is above the barrier and nothing in the other case. 
 
Example 14.3: a standard cash or nothing call 

– option type: all or nothing call; 

– underlying asset:  CAC 40 index; 

– nominal: 100,000; 

– device: €; 

– index value at the issuing of the option: 3,000 points; 

– exercise price: 3,100 points; 

– coupon: 10%; 

– issuing date: 5/1/07; 
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– maturity date: 5/1/08; 

– premium option: 2.9%. 

So, if the CAC 40 index is larger than 3,100 points at maturity time, the counter 
part will pay an amount of €10,000. 

The initial premium is €2,900, and the net return, excluding transaction costs, is 
245%. On the other hand, if the CAC 40 index is smaller than 3,100 points at 
maturity time, the premium is lost. 

14.10.5.2. Pricing of a call cash or nothing 

Let N be the coupon of the option and K the exercise price. From the definition 
of the type of this option, we have, under the risk neutral measure Q: 

2
( ) ( ) ( ( ) ( ))

2

( )
( )

( )

( )

( )

( ( ), , , ) .1 ,

1 ,

1 ( )
ln .

2 2

d

d

r r T t B T B td f

d

r T t
cn Q S T K

r T t
Q

S t e K

d fr T t

C S t N K t e E N

Ne E

r rS t
Ne T t

KT t

 (14.114) 

and so: 

( )
2( ( ), , , ) ,dr T t

cnC S t N K t Ne d  (14.115) 

where, as for the Garman-Kohlhagen model: 

2 1

2

1

,

1 ( )
log ( ) .

2d f

d d T t

S t
d r r T t

KT t

 (14.116) 

14.10.5.3. Case of the put cash or nothing 

For the put, we have: 

N.1 S(T ) K N N .1 K S(T ) ,   (14.117) 

and so: 
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Pcn (S(t), N,K,t) Ne rd (T t ) d2 .  (14.118) 

14.10.5.4. Main Greek parameters for call and put cash or nothing 

We just consider the case of the delta, gamma and vega. 

14.10.5.4.1. Case of the call 

a) The delta 
 

By definition, we have 

,C

C

S
  (14.119) 

so, by relation (14.115): 

( ) 2
2 ,dr T t

C

d
Ne d

S
  (14.120) 

and by relation (14.116): 

( )
2 .

.
dr T t

C

N
e d

T t S
 (14.121) 

Delta being always positive, it follows that the call is an increasing function of S, 
the value of the underlying asset at time t. Furthermore, it is maximum for S=K and 
becomes infinite at maturity. 

b) The gamma 
 

We know that: 

2

2
.c

C

C

S S
  (14.122) 

so, by relation (14.115): 

( )
2

2 22

1 1
.

dr T t

C

Ne d
d d

S S ST t
 (14.123) 

and finally: 
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( )

2 2 22

1 1 1
,

dr T t

C

Ne
d d d

S ST t S T t
 (14.124) 

or 
( )

2
22

1 .
dr T t

C

Ne d
d

S T t T t
 (14.125) 

This gamma is quasi-zero for large maturities, it changes its sign, from positive 
to negative values, at K, and at maturity, it becomes infinite. 

14.10.5.4.2. Put case 

From relation (14.117), we know that 

Pcn N Ccn,  (14.126) 

and so, we immediately obtain the following values: 

Pcn Ccn
,

Pcn Ccn
,

Pcn Ccn
.

  (14.127) 

14.10.6. “Asset or nothing” options 

14.10.6.1. Definition 

This type of option differs from the preceding one as it arrives at maturity at the 
money, the coupon paid is not a fixed amount N but a multiple of the underlying asset. 
 
Example 14.4: a standard asset or nothing 

– option type: call asset or nothing; 

– underlying asset: share X; 

– nominal: €800,000 (1,000 shares); 

– devise: €; 

– share value at the issuing of the option: €800; 

– exercise price: €850; 

– percentage: 10%; 

– payment: in asset value at maturity; 

– issuing date: 5/1/07; 

– maturity date: 5/1/08; 

– option premium: 4.25%. 
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So, if the asset value at maturity is above €850, for example €900, the 
counterpart has to pay, per share, an amount of 0.1  900 = 90, that is, a total 
amount of €90,000. 

In this case, for an initial investment of €34,000, the net return, without 
transaction costs, is given by: 

90,000 34,000
164.71%.

340
 

Of course, if the asset value at maturity is less than €850, the holder of the call 
loses the premium of €34,000. 

14.10.6.2. Pricing a call asset or nothing 

Let M be the percentage of share to be paid in cash and K the exercise price. 
 
Proceeding as before, under the risk neutral measure Q, we successively obtain: 
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 (14.128) 

The final result is: 

( )
1( ( ), , , ) ( ) .fr T t

anC S t M K t MS t e d  (14.129) 

For a call asset or nothing on a share market, setting rf 0 , we obtain: 

1( ( ), , , ) ( ) .anC S t M K t MS t d  (14.130) 

14.10.6.3. Premium of the put asset or nothing 

From the relation: 

( ) ( )( ).1 ( ) ( ).1 ,S T K K S TS T S T S T  (14.131) 
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we obtain: 

( )( ( ), , , ) ( ) ( ( ), , , ).dr T t
an Q cnP S t M K t e E MS T P S t M K t  (14.132) 

As under Q, the drift of S is given by rd rf , we can write that:  

( )( ( ), , , ) ( ) ( ( ), , , ).dr T t
an Q cnP S t M K t e E MS T P S t M K t  (14.133) 

Thus, 

( )
1( ( ), , , ) ( ) .fr T t

anP S t M K t Me S t d  (14.134) 

On a share market, we obtain in this case rf 0 : 

1( ( ), , , ) ( ) .anP S t N K t MS t d  (14.135) 

14.10.6.4. Greek parameters for call and put asset or nothing 

Here too, we just consider the case of the delta, gamma and vega. 

14.10.6.4.1. Case of the call 

a) The delta 

As 

,C

C

S
  (14.136) 

we obtain from relation (14.129): 

( ) ( )1
1 1( ) ,f fr T t r T t

C

d
MS t e d Me d

S
 (14.137) 

or 

( ) ( )
1 1 .d dr T t r T t

C

M
e d Me d

T t
 (14.138) 

The delta being always positive, it follows that the call is an increasing function 
of S, the value of the underlying asset at time t. Furthermore, it is maximum for 
S = K and, at maturity, it has the value M in the case of being in the money and 0 
out of the money. At maturity and at the money, the delta becomes infinite. 
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b) The gamma 

As 

2
c

C 2

C
,

S S
  (14.139) 

we obtain: 

( ) 1
1 1

1
,dr T t

C

d
Me d d

ST t
 (14.140) 

and 

( )

1 1

1
,

( )

dr T t

C

Me
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S t T t T t
 (14.141) 

or finally 

( )
1

11 .
( )

dr T t

C

Me d
d

S t T t T t
 (14.142) 

This gamma changes sign, from positive to negative values, at K, and at 
maturity, it becomes infinite. 

14.10.6.4.2. Case of the put 

As 

Pan Me
rf (T t )

S Can ,    (14.143) 

we immediately have: 

Pan
Me rf (T t)

Can
,

Pcn Ccn
,

Pcn Ccn
.

  (14.144) 
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14.10.7. The barrier options 

14.10.7.1. Definitions 

Let us assume that a French enterprise has to pay one of its American furnishers 
in dollars and in three months. 

 
If the exchange rate $/€ is 1.27, this enterprise e can be hedged against an 

increase of the exchange rate with a call in $ or a put in € in the money. However, if 
this enterprise anticipates that the rate will not be higher than 1.31, for example, it is 
possible to add a supplementary condition to the standard option contract as follows: 
if on [0, T], the rate goes beyond this value, then the option disappears and arrives 
at maturity without any value. 
 

This means that we introduce the concept of a barrier, here at a value of 1.31, 
and so this new type of option has a final value which depends on all the paths of the 
underlying asset and not only on its final value. 

 
It is clear that this new type of options, called barrier options, will find a liquid 

enough market as their premiums are lower than the plain vanilla options. So, we 
have the following definition. 
 
Definition 14.2 A barrier option is a path-dependent option, the payoff of which 
depends on the payoff of a traditional option and whether a pre-specified barrier 
has been crossed. 
 

Most popular types are: down-and-in options, down-and-out options, up-and-in 
options and up-and-down options. 
 

The definitions are as follows: 

(i) down-and-out options: a lower barrier (i.e. smaller than S(0)) is specified. If 
the spot exchange rate falls below this barrier during the life of the option, that is on 
[0, T], the option ceases to exist and if not, the option remains traditional; 

(ii) down-and-in options: the option becomes active only if the spot exchange 
rate goes below a given barrier; otherwise, the contract gives no right; 

(iii) up-and-out-options: with a given specified upper barrier, if the spot 
exchange rate goes above the barrier on [0, T], the option ceases to exist; otherwise, 
it remains a traditional option; 

(iv) up-and-it-options: with a given specified upper barrier, if the spot exchange 
rate does not go above the barrier on [0, T], the option is worthless; otherwise, it 
remains a traditional option. 
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14.10.7.2. Examples of pricing 

Let us consider the case of a down-and-in call. It is clear that the value of the call 
is given by 

( )( , ) ( ( ) ) 1d

H

r T t
di Q tT TC S t e E S T K , 

TH being the hitting time of the barrier H for the process S: 

HsSsTH )(:0inf  

Thus, we have: 
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In these results, we have: 
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 (14.145) 
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14.10.8. Lookback options 

These are also called “no regrets options” and are path-dependent options 
favorable to the holder as they are generally expansive. 

 
The two main types are: 

– the “standard lookback” option: in the case of a call, the payoff is given by: 

)(inf)(
0

tSTS
Tt

; 

– the “option on extrema” with a given exercise price K has as payoff for a call 
on maximum: 

0,
sup ( )

T
S s K .  (14.146) 

They are only interesting if the underlying asset is highly increasing or 
decreasing on [0,T] and with a high volatility.  

14.10.9. Asiatic (or average) options 

Such an option has as final payoff determined by the average price of the asset 
during a specified period, say [a,b], included in [0, T]. 

 
For a fixed strike average option, the payoff depends on the difference of the 

average and a fixed striking price; for a floating strike average option, the payoff at 
maturity depends on the difference of the spot price and the average. 

 
Sometimes, the geometric mean is used instead of the arithmetic mean. The 

evaluation of such options is complicated and, in general, there is no explicit 
formula for the pricing except in the last case for which Vorst (1990) proved that it 
suffices to use the Garman-Kohlhagen formula with  

21
' , '

2 63
f d fr r r . 

The “arithmetic mean” case was studied by Geman and Yor who gave the 
explicit form of the Laplace transform of the premium. 
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14.10.10. Rainbow options 

They depend on at least two underlying assets in the same device and have 
generally lower prices; this is due to the correlation between the considered assets. 

 
As example, let us present the outperformance or “Margrabe option” giving the 

right to the holder to receive the difference of returns between two assets if it is 
positive. 

 
This means that the holder receives the outperformance of asset A on asset B at 

maturity time T, that is, 2 1( ) ( )S T S T where S1 and S2 are two foreign currency 
rates expressed in the same device. 

 
The model to be considered is the following one: 

1 2

( ) ( ) ( ) ,  1, 2,

( ) ( ) .

i i i i idS t S t dt dW t i

E dW t dW t dt
 (14.147) 

so that 
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 (14.148) 

It is possible to prove the following result 
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which is in fact the Garman-Kohlhagen formula with: 1 2,K S S S ,rd=r1,rf=r2  
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14.11. The formula of Barone-Adesi and Whaley (1987): formula for American 
options 

Using the PDE approach for pricing American options giving a continuous 
dividend at rate y and an approximation by solving an ordinary differential equation, 
Barone-Adesi and Whaley (1987) obtained the following good approximations for 
the American call and put: 

1) For the call 
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where 2A  and 1( )d S  are given by: 
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S* being the solution of the following algebraic equation to be solved by iteration: 
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 (14.151) 

2) For the put 
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where 

1 1
1

2

1

**
[1 ( ( **)],

**
ln

2
( **) ,

yTS
A e d S

S
r y T

K
d S

T

 (14.153) 

S** being the solution of the following algebraic equation to be solved by iteration: 
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In these formulae, quantities S* and S** represent the thresholds to exercise 
respectively the call and put, i.e.: 

* ( *, , )( ** ( **, , ).am amS K C S T K K S P S T K  (14.155) 

These values are good for 0T  orT  but not so good for mean maturity 
values.  
 
Remark 14.8 Interpolation method for American puts (Johnson (1983), Broadie and 
Detemple (1996)) 
 

Johnson showed the following double inequality: 

( )( , , ) ( , , ) ( , , ).r T t
eur am eurP S T t K P S T t K P S T t Ke  (14.156) 

Then, he gave the following result: 

( )( , , ) ( , , ) (1 ) ( , , ).r T t
am eur eurP S T t K P S T t K P S T t Ke  (14.157) 

where the value of parameter  depends on the values of 2/ , ( ), ( ).S K r T t T t  
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Geske and Johnson model 

Discretizing [0, T] with the subdivision 1( ,..., )nt t , it is possible to approach the 
put value with a type of Cox-Rubinstein model. 

Parity relation  

Without dividend repartition, the traditional parity relation is replaced by the 
following double inequality: 

( , , ) ( , , ) .rT
am amS K C S T K P S T K S Ke  (14.158) 

Furthermore, without dividend repartition, we can use the traditional parity 
relation for European options to obtain: 

0 ( , , ) ( , , ) (1 ).rT
am eurP S T K P S T K K e  (14.159) 

Relation of symmetry  

Chesney and Gibson (1995) proved the following important result: 

( , , , , , ) ( , , , , , )am amC S T K r y P K T S y r  (14.160) 

so that, for the American options, every result on the call (respectively put) gives a 
result on the put (res. call) with the permutation of S and K and r and y. 
 
Example 14.5 Let us suppose that we have to know the value of an American put 
with parameters: 

100, 95, 1, 35%, 2.75%, 3%S K T r y ,  

we can solve the problem of an American call with parameters: 

95, 100, 1, 35%, 3%, 2.75%.S K T r y  

Example 14.6 Let us consider an asset with a value of €100 at t = 0 and suppose 
that the European call of maturity is three months and an exercise price of €102 has 
the value of €5.43. The European put with the same parameters has the value of 
€6.22. 
 

Knowing that the asset gives no dividend on the considered period provides: 

(i) the value of the American call with the same parameters; 

(ii) a double inequality for the American put of same parameters; 

(iii) the value of the risky instantaneous rate. 
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Answers 

(i) Knowing that the asset gives no dividend on the considered period, we know 
that the American call has the same value as the European call: €5.43.amC  

(ii) The American is always larger than the European put so that: € 6.22 amP . 
 
From the double inequality (14.156), we obtain: 

( , , ) ( , , ) ( , , )rT
am am amC S T K S Ke P S T K C S T K S K ,  (14.161) 

and from result (i) and the traditional parity relation, we obtain: 
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 (14.162) 

From the second inequality, we obtain here: 

( , , ) ( , , ) 5.43 100 102 €7.43.am eurP S T K C S T K S K  

The final reply is: 

6.22 7.43 .amEuro P Euro   (14.163) 

(i) From the traditional parity relation for European options, we have: 

( , , ) ( , , ),rT
eur eurC S T K S Ke P S T K  (14.164) 

and so: 
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 (14.165) 

We finally obtain: 

6.22 5, 43 100
4ln ,

102
0.04773.

r

r

  (14.166) 


